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Dear Dr. Latsis,
Prof. Thorens,
Ladies and Gentlemen,

It is a great honour for me to have the opportunity to present the key
parts of my work under the title "Stochastic Programming: Resolving
Uncertainty with Barycentric Approximation". I would like to
express my deepest thanks to the Latsis family and their Foundation.

My presentation intends to provide insights into the basic ideas of
stochastic programming (a field of activity within mathematical pro-
gramming) paying particular attention to the methodological
concept of barycentric approximation.

Introduction

The field of mathematical programming was mainly initiated by the
mathematician G. B. Dantzig in the mid'40s. Dantzig focused on the
ability to state objectives and then find optimal policy solutions to
pratical decision problems of great complexity. Additionally, he
considered the relations between the set of items being consumed or
produced and the set of associated activities or production pro-
cesses, which led to the incorporation of constraints in decision pro-
blems. Practitioners usually refer to their various plans and propo-
sed schedules as programs. This was the motivation for G. B. Dantzig
to introduce the notion programming in 1947. The terms linear pro-
gramming and mathematical programming were introduced by the
economists T. C. Koopmans in 1948 and R. Dorfman in 1949.

Dantzig was motivated to generalize the steady-state Input-Output
Model of W. Leontief to a dynamic model, one that could change over



time. He had in mind planning dynamically over time, particularly
planning under uncertainty. This way, stochastic programming began
to emerge as one important part of mathematical programming. The
complexity of interaction between time and uncertainty makes prac-
tical decision and planning problems to utmost difficult applications
of probability and optimization theory. Stochastic programming com-
bines these two fields with the intention to design sophisticated, ana-
lytical tools for analysing interaction effects between decision
making and uncertainty. Barycentric approximation may be seen as
one of such tools. It will be presented in light of an actual problem:
the optimal funding of variable rate mortgages.

A practical problem statement

Within the last decades, the asset and liability structures of banks
changed considerably. Due to growing institutional savings, the
retail savings volume has decreased. This development caused
banks to fund a considerable part of variable rate mortgage volume
with money and capital market instruments.

Funding variable rate mortgages with bonds of different maturities is
a planning problem, which requires periodic decision making based
on the current structure of maturing funds, the stochastic evolvement
of variable rate mortgages, and the interest rate curve. This planning
problem may be modelled and solved via stochastic programming:
monthly, the institution has to decide on its funding strategy; how
much of the current mortgage volume is to be borrowed with maturi-
ties of 1, 2, 3, 6 months, 1, 2, 3, 5, 7 or 10 years? The objective is to
minimize the expected funding costs, taking into account the risk the
institution is exposed to by the uncertain evolvement of mortgage volu-
me and interest rates over a predefined planning horizon.



For the ease of exposition, we focus on a one-month period. The
uncertain evolvement of interest rate and mortgage volume within
the next month may be visualized with a set of points (Figure 1).
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Figure 1: Empirical data (market movements)

These points may, e.g., represent empirical data of the past. It is only
for illustrative purposes that the interest rate is drawn in one dimen-
sion. The positive correlation of these data refer to the dependency
between interest rate level and the volume of variable rate mort-
gages: low interest rates induce a small volume of variable rate mort-
gages, as clients prefer fixed rate mortgages, high interest rates moti-
vate clients to prefer variable rate mortgages.

Covering market movements and pricing decisions

The first step to resolve uncertainty is covering the probabilistic
events (i.e. the market data) by a box with a sufficient confidence
level. The box stands for a Cartesian product of two simplices; in our
case, working with a one-dimensional mortgage volume and a one-
dimensional interest rate means that we have the Cartesian product



of two intervals forming the box (Figure 2). There are two edges AB
and CD that allow for varying the interest rates and two edges AD

and BC that allow for barying the mortgage volume.
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Figure 2: Covering stochastic market movements

Today, at the beginning of the planning period, our aim is to find
the optimal funding strategy based on the stochastic evolvement of
the market data interest rate and mortgage volume up to next
months. For any funding strategy of today one can determine its
value in one month based on the then observed interest rate and
mortgage volume. In other words, we may determine the future
value of today's funding strategy given a specific combination of
future market data (interest rate and morigage volume). The func-
tion which shows the cost of a specific funding strategy dependent
on market data is denoted value function or cost function (Figure 3).
Clearly, different funding strategies of today yield different value
functions. it is natural to choose the best strategy with the lowest
expected costs. It has to be stressed that the value function is not
given analytically, even not explicitly, but implicitly by the opti-
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Figure 3: Value function: pricing a decision

mal solutions of a stochastic multistage optimization problem. The
numerical effort for evaluating only a single value of the implicitly
given cost function takes about 1 hour even on very powerful works-
tations. Hence, one cannot practically afford to evaluate the cost
functions for hundreds of points, as this would take days until a
single funding strategy is priced, without having performed any opti-
mization procedure. Therefore, it becomes a necessity to rely on a
sufficiently accurate approximation of these value functions. This
approximation represents the second step to resolving uncertainty.

Upper and lower approximations of saddle functions

As mentioned before, the value functions are given implicitly by the
optimal solutions of a stochastic multistage optimization problem. In



Figure 4: Bilinear approximation of the value function

case that the underlying stochastic multistage optimization problem
is convex (and this, fortunately, happens in many practical situa-
tions), applying the convex duality theory due to Fenchel-
Rockafeller-Moreau, the value function takes the shape of a saddle
function. More precisely, the value function has a positive curvature
(a convex shape) with respect to the interest rates and a negative
curvature (a concave shape) with respect to the mortgage volume. It
is appropriate to design an approximation technique which exploits
the inherent saddle structure of the value functions. This can be moti-
vated in a rather easy way: take two points Ul and U2, one on each
boundary, which allow for varying the mortgage volume. Take the
corresponding linear (first-order) approximation of the cost function
with respect to the mortgage volume and form a bilinear upper
approximation of the cost function over the entire box ABCD, which
is supposed to cover the stochastic market movements sufficiently by
the end of next period. Analogously, take tow points L1 and 1.2, one
on each boundary, which allow for varying the interest rate. Take the
corresponding linear (first-order) approximation of the cost function
with respect to the interest rate and form a bilinear lower approxi-
mation of the cost function over the same box ABCD. These lower
and upper bilinear approximations are not only easy to integrate, as



only expectations and covariances of mortgage volume and interest
rates are needed, but also allow for stating and localizing the current
inaccuracies, so that potential improvements can be achieved via

successive box partitionings.
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Figure 5: Discretization of stochastic market movements

Having the goal to minimize the inaccuracy in mind, it can be obser-
ved that the bilinear approximations (and hence the level of inaccu-
racy) vary with the pair of points (U1, U2) and (L1, L2). It remains
to be answered which pairs are optimal in the sens that they yield the
best approximation of the expected costs. Those who are familiar
with mathematical optimization realize that this amounts to the opti-
mal solution of a so-called semi-infinite optimization problem. It is
the saddle structure which allows that this question can be solved
analytically with explicit formulae. This is the third and last step to
resolving uncertainty.

Diseretization of stochastic movements

The derivation of the numerical result can be visualized in the follo-
wing way: Imagine that these points (which refer to the market data
mortgage volume and interest rates) represent a mass distribution



with a mass equal to 1. Perform a projection of these points onto the
volume boundaries so that the distance of the mass points to the
boundaries is taken into account. This decomposes the entire unit
mass into two component parts. Each boundary obtains its own mass
distribution; the mass on each boundary is less than one, but toge-
ther, they add up to the unity mass. Since now the volume bounda-
ries represent simplices equipped with a particular mass, one can
evaluate the associated generalized barycenters Ul, U2. It can be
proven that these two barycenters Ul, U2 represent the optimal
points where the value function should be supported from above for
minimizing the expected error. Observe that these barycenters differ
in the volume coordinate; this asymmetry is caused by the positive
correlation of the two stochastic components, mortgage volume and
interest rates.

The same argumentation is applicable for the derivation of the best
lower approximation. Now, the projection of market data is perfor-
med to the interest rate boundaries (which are simplices in the
multidimensional case), taking into account the distance of the
points to those boundaries, obtaining again two mass distributions
which determine the corresponding barycenters L1 and L2. These
represent the optimal points for supporting the value function from
below. These barycenters are asymmetric with respect to the mort-
gage volume because of the positive correlation.

This way, two discrete distributions are obtained which are optimal
solutions of the so-called generalized moment problems, the dual for-
mulations of the semi-infinite programs mentioned earlier. In exactly
this sense, these discrete approximations may be viewed as the best
approximations of the stochastic market movements, being complete-
ly determined by the expectations and covariances of interest rate
and mortgage volume. Based on these barycenters, that are small in
number even after some box refinements, the funding strategies can
be priced sufficiently fast so that the optimization can be performed.



Conclusions and perspectives

This approach has been successfully applied to the problem of fun-
ding variable rate mortgages in cooperation with a Swiss bank.
Practitioners have accepted that the barycenters may be interpreted
as a very important bundle of market scenarios, based on which the
funding strategies should be priced and optimized. It is certainly
encouraging that up to now a promising performance can be repor-
ted. However, it must be stressed that there is no guarantee for the
future.

Today, I have focused on a particular methodology which has the
potential to solve complex models. In the presentation almost
nothing has been revealed concerning modelling details. Bus those
details are the key elements for mapping the real problem with suf-
ficient goodness and, in the sequel, for preserving the achieved per-
formance.

Within the methodological as well as the modelling component,
numerous challenging issues that have arised will attract further
scientific research activities.

Ladies and gentlemen, at this stage, I would like to thank Prof. Kall,
head of the Institute of Operations Research at the University of
Zurich, and Prof. Stihly, head of the Institute of Operations
Research at the University of St. Gallen. Both supported and strong-
ly stimulated this work, provided me with an excellent work envi-
ronment and made these developments possible.

Expressing my deep gratitude the Latsis Foundation, I would like to
thank you, Ladies and Gentlemen, for your attention.
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